Making a Science of Model Search
نویسندگان
چکیده
Many computer vision algorithms depend on a variety of parameter choices and settings that are typically hand-tuned in the course of evaluating the algorithm. While such parameter tuning is often presented as being incidental to the algorithm, correctly setting these parameter choices is frequently critical to evaluating a method’s full potential. Compounding matters, these parameters often must be re-tuned when the algorithm is applied to a new problem domain, and the tuning process itself often depends on personal experience and intuition in ways that are hard to quantify or describe. Since the performance of a given technique depends on both the fundamental quality of the algorithm and the details of its tuning, it is sometimes difficult to know whether a given technique is genuinely better, or simply better tuned. In this work, we propose a meta-modeling approach to support automated hyper parameter optimization, with the goal of providing practical tools that replace hand-tuning with a reproducible and unbiased optimization process. Our approach is to expose the underlying expression graph of how a performance metric (e.g. classification accuracy on validation examples) is computed from hyper parameters that govern not only how individual processing steps are applied, but even which processing steps are included. A hyper parameter optimization algorithm transforms this graph into a program for optimizing that performance metric. Our approach yields state of the art results on three disparate computer vision problems: a face-matching verification task (LFW), a face identification task (PubFig83) and an object recognition task (CIFAR-10), using a single unified algorithm class. More broadly, we argue that the formalization of a meta-model supports more objective, reproducible, and quantitative evaluation of computer vision algorithms, and that it can serve as a valuable tool for guiding algorithm development.
منابع مشابه
An Integrated Decision Making Model for Manufacturing Cell Formation and Supplier Selection
Optimization of the complete manufacturing and supply process has become a critical ingredient for gaining a competitive advantage. This article provides a unified mathematical framework for modeling manufacturing cell configuration and raw material supplier selection in a two-level supply chain network. The commonly used manufacturing design parameters along with supplier selection and a subco...
متن کاملA New Mathematical Model for a Multi-product Supply Chain Network with a Preventive Maintenance Policy
The supply chain network design (SCND) implicates decision-making at a strategic level and makes it possible to create an effective and helpful context for managing. The aim of the network is to minimize the total cost so that customer's demands should be met. Preventive maintenance is pre-determined work performed to a schedule with the aim of preventing the wear and tear or sudden failure of ...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملProbabilistic Power Distribution Planning Using Multi-Objective Harmony Search Algorithm
In this paper, power distribution planning (PDP) considering distributed generators (DGs) is investigated as a dynamic multi-objective optimization problem. Moreover, Monte Carlo simulation (MCS) is applied to handle the uncertainty in electricity price and load demand. In the proposed model, investment and operation costs, losses and purchased power from the main grid are incorporated in the f...
متن کاملDeveloping a Permutation Method Using Tabu Search Algorithm: A Case Study of Ranking Some Countries of West Asia and North Africa Based on Important Development Criteria
The recent years have witnessed an increasing attention to the methods of multiple attribute decision making in solving the problems of the real world due to their shorter time of calculation and easy application. One of these methods is the ‘permutation method’ which has a strong logic in connection with ranking issues, but when the number of alternatives increases, solving problems through th...
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1209.5111 شماره
صفحات -
تاریخ انتشار 2012